This Domain For Sale.

Interested to Buy.., Please Contact sales@domainmoon.com

Phosphorylation of BECLIN-1 by BCR-ABL suppresses autophagy in chronic myeloid leukemia

Autophagy is a genetically regulated process of adaptation to metabolic stress and was recently shown to be involved in the treatment response of chronic myeloid leukemia (CML). However, in vivo data are limited and the molecular mechanism of autophagy regulators in the process of leukemogenesis is not completely understood. Here we show that Beclin-1 knockdown, but not Atg5 deletion in a murine CML model leads to a reduced leukemic burden and results in a significantly prolonged median survival of targeted mice. Further analyses of murine cell lines and primary patient material indicate that active BCR-ABL directly interacts with BECLIN-1 and phosphorylates its tyrosine residues 233 and 352, resulting in autophagy suppression. By using phosphorylation-deficient and phosphorylation-mimic mutants, we identify BCR-ABL induced BECLIN-1 phosphorylation as a crucial mechanism for BECLIN-1 complex formation: interaction analyses exhibit diminished binding of the positive autophagy regulators UVRAG, VPS15, ATG14 and VPS34 and enhanced binding of the negative regulator Rubicon to BCR-ABL-phosphorylated BECLIN-1. Taken together, our findings show interaction of BCR-ABL and BECLIN-1 thereby highlighting the importance of BECLIN-1-mediated autophagy in BCR-ABL+ cells.


View Details..

Meningioma 1 is indispensable for mixed lineage leukemia-rearranged acute myeloid leukemia

Mixed lineage leukemia (MLL/KMT2A) rearrangements (MLL-r) are one of the most frequent chromosomal aberrations in acute myeloid leukemia. We evaluated the function of Meningioma 1 (MN1), a co-factor of HOXA9 and MEIS1, in human and murine MLL-rearranged leukemia by CRISPR-Cas9 mediated deletion of MN1. MN1 was required for in vivo leukemogenicity of MLL positive murine and human leukemia cells. Loss of MN1 inhibited cell cycle and proliferation, promoted apoptosis and induced differentiation of MLL-rearranged cells. Expression analysis and chromatin immunoprecipitation with sequencing from previously reported data sets demonstrated that MN1 primarily maintains active transcription of HOXA9 and HOXA10, which are critical downstream genes of MLL, and their target genes like BCL2, MCL1 and Survivin. Treatment of MLL-rearranged primary leukemia cells with anti-MN1 siRNA significantly reduced their clonogenic potential in contrast to normal CD34+ hematopoietic progenitor cells, suggesting a therapeutic window for MN1 targeting. In summary, our findings demonstrate that MN1 plays an essential role in MLL fusion leukemias and serve as a therapeutic target in MLL-rearranged acute myeloid leukemia.


View Details..

TARP is an immunotherapeutic target in acute myeloid leukemia expressed in the leukemic stem cell compartment

Immunotherapeutic strategies targeting the rare leukemic stem cell compartment might provide salvage to the high relapse rates currently observed in acute myeloid leukemia (AML). We applied gene expression profiling for comparison of leukemic blasts and leukemic stem cells with their normal counterparts. Here, we show that the T-cell receptor chain alternate reading frame protein (TARP) is over-expressed in de novo pediatric (n=13) and adult (n=17) AML sorted leukemic stem cells and blasts compared to hematopoietic stem cells and normal myeloblasts (15 healthy controls). Moreover, TARP expression was significantly associated with a fms-like tyrosine kinase receptor-3 internal tandem duplication in pediatric AML. TARP overexpression was confirmed in AML cell lines (n=9), and was found to be absent in B-cell acute lymphocytic leukemia (n=5) and chronic myeloid leukemia (n=1). Sequencing revealed that both a classical TARP transcript, as described in breast and prostate adenocarcinoma, and an AML-specific alternative TARP transcript, were present. Protein expression levels mostly matched transcript levels. TARP was shown to reside in the cytoplasmic compartment and showed sporadic endoplasmic reticulum co-localization. TARP-T-cell receptor engineered cytotoxic T-cells in vitro killed AML cell lines and patient leukemic cells co-expressing TARP and HLA-A*0201. In conclusion, TARP qualifies as a relevant target for immunotherapeutic T-cell therapy in AML.


View Details..

Dissecting molecular mechanisms of resistance to NOTCH1-targeted therapy in T-cell acute lymphoblastic leukemia xenografts

Despite substantial progress in treatment of T-cell acute lymphoblastic leukemia (T-ALL), mortality remains relatively high, mainly due to primary or acquired resistance to chemotherapy. Further improvements in survival demand better understanding of T-ALL biology and development of new therapeutic strategies. The Notch pathway has been involved in the pathogenesis of this disease and various therapeutic strategies are currently under development, including selective targeting of NOTCH receptors by inhibitory antibodies. We previously demonstrated that the NOTCH1-specific neutralizing antibody OMP52M51 prolongs survival in TALL patient-derived xenografts bearing NOTCH1/FBW7 mutations. However, acquired resistance to OMP52M51 eventually developed and we used patient-derived xenografts models to investigate this phenomenon. Multi-level molecular characterization of T-ALL cells resistant to NOTCH1 blockade and serial transplantation experiments uncovered heterogeneous types of resistance, not previously reported with other Notch inhibitors. In one model, resistance appeared after 156 days of treatment, it was stable and associated with loss of Notch inhibition, reduced mutational load and acquired NOTCH1 mutations potentially affecting the stability of the heterodimerization domain. Conversely, in another model resistance developed after only 43 days of treatment despite persistent down-regulation of Notch signaling and it was accompanied by modulation of lipid metabolism and reduced surface expression of NOTCH1. Our findings shed light on heterogeneous mechanisms adopted by the tumor to evade NOTCH1 blockade and support clinical implementation of antibody-based target therapy for Notch-addicted tumors.


View Details..

Impact of cytogenetic abnormalities on outcomes of adult Philadelphia-negative acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation: a study by the Acute Leukemia Working Committee of the Center for International Blood and

Cytogenetic risk stratification at diagnosis has long been one of the most useful tools to assess prognosis in acute lymphoblastic leukemia (ALL). To examine the prognostic impact of cytogenetic abnormalities on outcomes after allogeneic hematopoietic cell transplantation, we studied 1731 adults with Philadelphia-negative ALL in complete remission who underwent myeloablative or reduced intensity/non-myeloablative conditioning transplant from unrelated or matched sibling donors reported to the Center for International Blood and Marrow Transplant Research. A total of 632 patients had abnormal conventional metaphase cytogenetics. The leukemia-free survival and overall survival rates at 5 years after transplantation in patients with abnormal cytogenetics were 40% and 42%, respectively, which were similar to those in patients with a normal karyotype. Of the previously established cytogenetic risk classifications, modified Medical Research Council-Eastern Cooperative Oncology Group score was the only independent prognosticator of leukemia-free survival (P=0.03). In the multivariable analysis, monosomy 7 predicted post-transplant relapse [hazard ratio (HR)=2.11; 95% confidence interval (95% CI): 1.04-4.27] and treatment failure (HR=1.97; 95% CI: 1.20-3.24). Complex karyotype was prognostic for relapse (HR=1.69; 95% CI: 1.06-2.69), whereas t(8;14) predicted treatment failure (HR=2.85; 95% CI: 1.35-6.02) and overall mortality (HR=3.03; 95% CI: 1.44-6.41). This large study suggested a novel transplant-specific cytogenetic scheme with adverse [monosomy 7, complex karyotype, del(7q), t(8;14), t(11;19), del(11q), tetraploidy/near triploidy], intermediate (normal karyotype and all other abnormalities), and favorable (high hyperdiploidy) risks to prognosticate leukemia-free survival (P=0.02). Although some previously established high-risk Philadelphia-negative cytogenetic abnormalities in ALL can be overcome by transplantation, monosomy 7, complex karyotype, and t(8;14) continue to pose significant risks and yield inferior outcomes.


View Details..

An intronic deletion in megakaryoblastic leukemia 1 is associated with hyperproliferation of B cells in triplets with Hodgkin lymphoma

Megakaryoblastic leukemia 1 (MKL1) is a coactivator of serum response factor and together they regulate transcription of actin cytoskeleton genes. MKL1 is associated with hematologic malignancies and immunodeficiency, but its role in B cells is unexplored. Here we examined B cells from monozygotic triplets with an intronic deletion in MKL1, two of whom had been previously treated for Hodgkin lymphoma (HL). To investigate MKL1 and B-cell responses in the pathogenesis of HL, we generated Epstein-Barr virus-transformed lymphoblastoid cell lines from the triplets and two controls. While cells from the patients with treated HL had a phenotype close to that of the healthy controls, cells from the undiagnosed triplet had increased MKL1 mRNA, increased MKL1 protein, and elevated expression of MKL1-dependent genes. This profile was associated with elevated actin content, increased cell spreading, decreased expression of CD11a integrin molecules, and delayed aggregation. Moreover, cells from the undiagnosed triplet proliferated faster, displayed a higher proportion of cells with hyperploidy, and formed large tumors in vivo. This phenotype was reversible by inhibiting MKL1 activity. Interestingly, cells from the triplet treated for HL in 1985 contained two subpopulations: one with high expression of CD11a that behaved like control cells and the other with low expression of CD11a that formed large tumors in vivo similar to cells from the undiagnosed triplet. This implies that pre-malignant cells had re-emerged a long time after treatment. Together, these data suggest that dysregulated MKL1 activity participates in B-cell transformation and the pathogenesis of HL.


View Details..

Identification of a miR-146b-Fas ligand axis in the development of neutropenia in T large granular lymphocyte leukemia

Tlarge granular lymphocyte leukemia (T-LGLL) is characterized by the expansion of several large granular lymphocyte clones, among which a subset of large granular lymphocytes showing constitutively activated STAT3, a specific CD8+/CD4 phenotype and the presence of neutropenia has been identified. Although STAT3 is an inducer of transcription of a large number of oncogenes, so far its relationship with miRNAs has not been evaluated in T-LGLL patients. Here, we investigated whether STAT3 could carry out its pathogenetic role in T-LGLL through an altered expression of miRNAs. The expression level of 756 mature miRNA was assessed on purified T large granular lymphocytes (T-LGLs) by using a TaqMan Human microRNA Array. Hierarchical Clustering Analysis of miRNA array data shows that the global miRNome clusters with CD8 T-LGLs. Remarkably, CD8 T-LGLs exhibit a selective and STAT3-dependent repression of miR-146b expression, that significantly correlated with the absolute neutrophil counts and inversely correlated with the expression of Fas ligand (FasL), that is regarded as the most relevant factor in the pathogenesis of neutropenia. Experimental evidence demonstrates that the STAT3-dependent reduction of miR-146b expression in CD8 T-LGLs occurs as a consequence of miR-146b promoter hypermethylation and results in the disruption of the HuR-mediated post-transcriptional machinery controlling FasL mRNA stabilization. Restoring miR-146b expression in CD8 T-LGLs lead to a reduction of HuR protein and, in turn, of FasL mRNA expression, thus providing mechanistic insights for the existence of a STAT3-miR146b-FasL axis and neutropenia in T-LGLL.


View Details..

CXCR4 upregulation is an indicator of sensitivity to B-cell receptor/PI3K blockade and a potential resistance mechanism in B-cell receptor-dependent diffuse large B-cell lymphomas

B-cell receptor (BCR) signaling pathway components represent promising treatment targets in multiple B-cell malignancies including diffuse large B-cell lymphoma (DLBCL). In in vitro and in vivo model systems, a subset of DLBCLs depend upon BCR survival signals and respond to proximal BCR/phosphoinositide 3 kinase (PI3K) blockade. However, single-agent BCR pathway inhibitors have had more limited activity in patients with DLBCL, underscoring the need for indicators of sensitivity to BCR blockade and insights into potential resistance mechanisms. Here, we report highly significant transcriptional upregulation of C-X-C chemokine receptor 4 (CXCR4) in BCR-dependent DLBCL cell lines and primary tumors following chemical spleen tyrosine kinase (SYK) inhibition, molecular SYK depletion or chemical PI3K blockade. SYK or PI3K inhibition also selectively upregulated cell surface CXCR4 protein expression in BCR-dependent DLBCLs. CXCR4 expression was directly modulated by fork-head box O1 via the PI3K/protein kinase B/forkhead box O1 signaling axis. Following chemical SYK inhibition, all BCR-dependent DLBCLs exhibited significantly increased stromal cell-derived factor-1α (SDF-1α) induced chemotaxis, consistent with the role of CXCR4 signaling in B-cell migration. Select PI3K isoform inhibitors also augmented SDF-1α induced chemotaxis. These data define CXCR4 upregulation as an indicator of sensitivity to BCR/PI3K blockade and identify CXCR4 signaling as a potential resistance mechanism in BCR-dependent DLBCLs.


View Details..

An increase in MYC copy number has a progressive negative prognostic impact in patients with diffuse large B-cell and high-grade lymphoma, who may benefit from intensified treatment regimens

MYC translocations, a hallmark of Burkitt lymphoma, occur in 5-15% of diffuse large B-cell lymphoma, and have a negative prognostic impact. Numerical aberrations of MYC have also been detected in these patients, but their incidence and prognostic role are still controversial. We analyzed the clinical impact of MYC increased copy number on 385 patients with diffuse large B-cell lymphoma screened at diagnosis for MYC, BCL2, and BCL6 rearrangements. We enumerated the number of MYC copies, defining as amplified those cases with an uncountable number of extra-copies. The prevalence of MYC translocation, increased copy number and amplification was 8.8%, 15%, and 1%, respectively. Patients with 3 or 4 gene copies, accounting for more than 60% of patients with MYC copy number changes, had a more favorable outcome compared to patients with >4 copies or translocation of MYC, and were not influenced by the type of treatment received as first-line. Stratification according to the number of MYC extra-copies showed a negative correlation between an increasing number of copies and survival. Patients with >7 copies or the amplification of MYC had the poorest prognosis. Patients with >4 copies of MYC showed a similar, trending towards worse prognosis compared to patients with MYC translocation. The survival of patients with >4 copies, translocation or amplification of MYC seemed to be superior if intensive treatments were used. Our study underlines the importance of fluorescence in situ hybridization testing at diagnosis of diffuse large B-cell lymphoma to detect the rather frequent and clinically significant numerical aberrations of MYC.


View Details..

Genomic alterations in high-risk chronic lymphocytic leukemia frequently affect cell cycle key regulators and NOTCH1-regulated transcription

To identify genomic alterations contributing to the pathogenesis of high-risk chronic lymphocytic leukemia (CLL) beyond the well-established role of TP53 aberrations, we comprehensively analyzed 75 relapsed/refractory and 71 treatment-naïve high-risk cases from prospective clinical trials by single nucleotide polymorphism arrays and targeted next-generation sequencing. Increased genomic complexity was a hallmark of relapsed/refractory and treatment-naïve high-risk CLL. In relapsed/refractory cases previously exposed to the selective pressure of chemo(immuno)therapy, gain(8)(q24.21) and del(9)(p21.3) were particularly enriched. Both alterations affect key regulators of cell-cycle progression, namely MYC and CDKN2A/B. While homozygous CDKN2A/B loss has been directly associated with Richter transformation, we did not find this association for heterozygous loss of CDKN2A/B. Gains in 8q24.21 were either focal gains in a MYC enhancer region or large gains affecting the MYC locus, but only the latter type was highly enriched in relapsed/refractory CLL (17%). In addition to a high frequency of NOTCH1 mutations (23%), we found recurrent genetic alterations in SPEN (4% mutated), RBPJ (8% deleted) and SNW1 (8% deleted), all affecting a protein complex that represses transcription of NOTCH1 target genes. We investigated the functional impact of these alterations on HES1, DTX1 and MYC gene transcription and found derepression of these NOTCH1 target genes particularly with SPEN mutations. In summary, we provide new insights into the genomic architecture of high-risk CLL, define novel recurrent DNA copy number alterations and refine knowledge on del(9p), gain(8q) and alterations affecting NOTCH1 signaling. This study was registered at ClinicalTrials.gov with number NCT01392079.


View Details..

IL6R-STAT3-ADAR1 (P150) interplay promotes oncogenicity in multiple myeloma with 1q21 amplification

1q21 amplification is an important prognostic marker in multiple myeloma. In this study we identified that IL6R (the interleukin-6 membrane receptor) and ADAR1 (an RNA editing enzyme) are critical genes located within the minimally amplified 1q21 region. Loss of individual genes caused suppression to the oncogenic phenotypes, the magnitude of which was enhanced when both genes were concomitantly lost. Mechanistically, IL6R and ADAR1 collaborated to induce a hyper-activation of the oncogenic STAT3 pathway. High IL6R confers hypersensitivity to interleukin-6 binding, whereas, ADAR1 forms a constitutive feed-forward loop with STAT3 in a P150-isoform-predominant manner. In this respect, ADAR1-P150 acts as a direct transcriptional target for STAT3 and this STAT3-induced-P150 in turn directly interacts with and stabilizes the former protein, leading to a larger pool of proteins acting as oncogenic transcription factors for pro-survival genes. The importance of both IL6R and ADAR1-P150 in STAT3 signaling was further validated when concomitant knockdown of both genes impeded IL6-induced-STAT3 pathway activation. Clinical evaluation of various datasets of myeloma patients showed that low expression of either one or both genes was closely associated with a compromised STAT3 signature, confirming the involvement of IL6R and ADAR1 in the STAT3 pathway and underscoring their essential role in disease pathogenesis. In summary, our findings highlight the complexity of the STAT3 pathway in myeloma, in association with 1q21 amplification. This study therefore reveals a novel perspective on 1q21 abnormalities in myeloma and a potential therapeutic target for this cohort of high-risk patients.


View Details..

Cardiac biomarkers are prognostic in systemic light chain amyloidosis with no cardiac involvement by standard criteria

Patients with systemic immunoglobulin light chain amyloidosis (AL) with no evidence of cardiac involvement by consensus criteria have excellent survival, but 20% will die within 5 years of diagnosis and prognostic factors remain poorly characterised. We report the outcomes of 378 prospectively followed Mayo stage I patients (N-terminal pro b-type natriuretic peptide <332 ng/L, high sensitivity cardiac troponin <55 ng/L). The median presenting N-terminal pro b-type natriuretic peptide was 161 ng/L, high sensitivity cardiac troponin 10 ng/L, creatinine 76 μmol/L and mean left ventricular septal wall thickness, 10 mm. Median follow up was 42 (1-117 months), with 71 deaths; median overall survival was not reached (78% survival at 5 years). Although no patients had cardiac involvement by echocardiogram, a proportion (n=25/90, 28%) had cardiac involvement by cardiac magnetic resonance imaging. Age, autonomic nervous system involvement, N-terminal pro b-type natriuretic peptide >152 ng/L, high sensitivity cardiac troponin >10 ng/L and cardiac involvement by magnetic resonance imaging were predictive for survival; on multivariate analysis only N-terminal pro b-type natriuretic peptide >152 ng/L (P<0.008, hazard ratio [HR] 3.180, confidence interval [CI]: 1.349-7.495) and cardiac involvement on magnetic resonance imaging (P=0.026, HR=5.360, CI: 1.219-23.574) were prognostic. At 5 years, 70% of patients with N-terminal pro b-type natriuretic peptide >152 ng/L were alive. In conclusion, N-terminal pro b-type natriuretic peptide is prognostic for survival in patients with no cardiac involvement by consensus criteria and cardiac involvement is detected by magnetic resonance imaging in such cases. This suggests that N-terminal pro b-type natriuretic peptide thresholds for cardiac involvement in AL may need to be redefined.


View Details..

Dynamin 2 is required for GPVI signaling and platelet hemostatic function in mice

Receptor-mediated endocytosis, which contributes to a wide range of cellular functions, including receptor signaling, cell adhesion, and migration, requires endocytic vesicle release by the large GTPase dynamin 2. Here, the role of dynamin 2 was investigated in platelet hemostatic function using both pharmacological and genetic approaches. Dnm2fl/fl Pf4-Cre (Dnm2Plt/) mice specifically lacking dynamin 2 within the platelet lineage developed severe thrombocytopenia and bleeding diathesis and Dnm2Plt/ platelets adhered poorly to collagen under arterial shear rates. Signaling via the collagen receptor GPVI was impaired in platelets treated with the dynamin GTPase inhibitor dynasore, as evidenced by poor protein tyrosine phosphorylation, including that of the proximal tyrosine kinase Lyn on its activating tyrosine 396 residue. Platelet stimulation via GPVI resulted in a slight decrease in GPVI, which was maintained by dynasore treatment. Dynasore-treated platelets had attenuated function when stimulated via GPVI, as evidenced by reduced GPIbα downregulation, α-granule release, integrin αIIbβ3 activation, and spreading onto immobilized fibrinogen. By contrast, responses to the G-protein coupled receptor agonist thrombin were minimally affected by dynasore treatment. GPVI expression was severely reduced in Dnm2Plt–/– platelets, which were dysfunctional in response to stimulation via GPVI, and to a lesser extent to thrombin. Dnm2Plt–/– platelets lacked fibrinogen in their α-granules, but retained von Willebrand factor. Taken together, the data show that dynamin 2 plays a proximal role in signaling via the collagen receptor GPVI and is required for fibrinogen uptake and normal platelet hemostatic function.


View Details..

The contact system proteases play disparate roles in streptococcal sepsis

Sepsis causes an activation of the human contact system, an inflammatory response mechanism against foreign surfaces, proteins and pathogens. The serine proteases of the contact system, factor XII and plasma kallikrein, are decreased in plasma of septic patients, which was previously associated with an unfavorable outcome. However, the precise mechanisms and roles of contact system factors in bacterial sepsis are poorly understood. We, therefore, studied the physiological relevance of factor XII and plasma kallikrein in a mouse model of experimental sepsis. We show that decreased plasma kallikrein concentration in septic mice is a result of reduced mRNA expression plasma prekallikrein gene, indicating that plasma kallikrein belong to negative acute phase proteins. Investigations regarding the pathophysiological function of contact system proteases during sepsis revealed different roles for factor XII and plasma kallikrein. In vitro, factor XII decelerated bacteria induced fibrinolysis, whereas plasma kallikrein supported it. Remarkably, depletion of plasma kallikrein (but not factor XII) by treatment with antisense-oligonucleotides, dampens bacterial dissemination and growth in multiple organs in the mouse sepsis model. These findings identify plasma kallikrein as a novel host pathogenicity factor in Streptococcus pyogenes sepsis.


View Details..

Accuracy of the Ottawa score in risk stratification of recurrent venous thromboembolism in patients with cancer-associated venous thromboembolism: a systematic review and meta-analysis

In patients with cancer-associated venous thromboembolism, knowledge of the estimated rate of recurrent events is important for clinical decision-making regarding anticoagulant therapy. The Ottawa score is a clinical prediction rule designed for this purpose, stratifying patients according to their risk of recurrent venous thromboembolism during the first six months of anticoagulation. We conducted a systematic review and meta-analysis of studies validating either the Ottawa score in its original or modified versions. Two investigators independently reviewed the relevant articles published from 1st June 2012 to 15th December 2018 and indexed in MEDLINE and EMBASE. Nine eligible studies were identified; these included a total of 14,963 patients. The original score classified 49.3% of the patients as high-risk, with a sensitivity of 0.7 [95% confidence interval (CI): 0.6-0.8], a 6-month pooled rate of recurrent venous thromboembolism of 18.6% (95%CI: 13.9-23.9). In the low-risk group, the recurrence rate was 7.4% (95%CI: 3.4-12.5). The modified score classified 19.8% of the patients as low-risk, with a sensitivity of 0.9 (95%CI: 0.4-1.0) and a 6-month pooled rate of recurrent venous thromboembolism of 2.2% (95%CI: 1.6-2.9). In the high-risk group, recurrence rate was 10.2% (95%CI: 6.4-14.6). Limitations of our analysis included type and dosing of anticoagulant therapy. We conclude that new therapeutic strategies are needed in patients at high risk for recurrent cancer-associated venous thromboembolism. Low-risk patients, as per the modified score, could be good candidates for oral anticoagulation. (This systematic review was registered with the International Prospective Registry of Systematic Reviews as: PROSPERO CRD42018099506).


View Details..

Relationship between factor VIII activity, bleeds and individual characteristics in severe hemophilia A patients

Pharmacokinetic-based prophylaxis of replacement factor VIII (FVIII) products has been encouraged in recent years, but the relationship between exposure (factor VIII activity) and response (bleeding frequency) remains unclear. The aim of this study was to characterize the relationship between FVIII dose, plasma FVIII activity, and bleeding patterns and individual characteristics in severe hemophilia A patients. Pooled pharmacokinetic and bleeding data during prophylactic treatment with BAY 81-8973 (octocog alfa) were obtained from the three LEOPOLD trials. The population pharmacokinetics of FVIII activity and longitudinal bleeding frequency, as well as bleeding severity, were described using non-linear mixed effects modeling in NONMEM. In total, 183 patients [median age 22 years (range, 1-61); weight 60 kg (11-124)] contributed with 1,535 plasma FVIII activity observations, 633 bleeds and 11 patient/study characteristics [median observation period 12 months (3.1-13.1)]. A parametric repeated time-to-categorical bleed model, guided by plasma FVIII activity from a 2-compartment population pharmacokinetic model, described the time to the occurrence of bleeds and their severity. Bleeding probability decreased with time of study, and a bleed was not found to affect the time of the next bleed. Several covariate effects were identified, including the bleeding history in the 12-month pre-study period increasing the bleeding hazard. However, unexplained inter-patient variability in the phenotypic bleeding pattern remained large (111%CV). Further studies to translate the model into a tool for dose individualization that considers the individual bleeding risk are required. Research was based on a post-hoc analysis of the LEOPOLD studies registered at clinicaltrials.gov identifiers: 01029340, 01233258 and 01311648.


View Details..

Pre-transplant testosterone and outcome of men after allogeneic stem cell transplantation

Testosterone is an important determinant of endothelial function and vascular health in men. As both factors play a role in mortality after allogeneic stem cell transplantation (alloSCT), we retrospectively evaluated the impact of pre-transplant testosterone levels on outcome in male patients undergoing alloSCT. In the discovery cohort (n=346), an impact on outcome was observed only in the subgroup of patients allografted for acute myeloid leukemia (AML) (n=176, hereafter termed ‘training cohort’). In the training cohort, lower pre-transplant testosterone levels were significantly associated with shorter overall survival (OS) [hazard ratio (HR) for a decrease of 100 ng/dL: 1.11, P=0.045]. This was based on a higher hazard of non-relapse mortality (NRM) (cause-specific HR: 1.25, P=0.013), but not relapse (cause-specific HR: 1.06, P=0.277) in the multivariable models. These findings were replicated in a confirmation cohort of 168 male patients allografted for AML in a different center (OS, HR: 1.15, P=0.012 and NRM, cause-specific HR: 1.23; P=0.008). Next, an optimized cut-off point for pre-transplant testosterone was derived from the training set and evaluated in the confirmation cohort. In multivariable models, low pre-transplant testosterone status (<250 ng/dL) was associated with worse OS (hazard ratio 1.95, P=0.021) and increased NRM (cause-specific HR 2.68, P=0.011) but not with relapse (cause-specific HR: 1.28, P=0.551). Our findings may provide a rationale for prospective studies on testosterone/androgen assessment and supplementation in male patients undergoing alloSCT for AML.


View Details..

Association of early disease progression and very poor survival in the GALLIUM study in follicular lymphoma: benefit of obinutuzumab in reducing the rate of early progression


View Details..

Diabetes Spectrum


View Details..

A Sincere Thank You to the Reviewers of Diabetes Spectrum


View Details..

Improving Outcomes of People With Diabetes Through Overcoming Therapeutic InertiaPreface


View Details..

About Kamlesh Khunti, MD, PHD, FRCP, FRCGP, FMEDSCI: Guest Editor, Improving Outcomes of People With Diabetes Through Overcoming Therapeutic InertiaPreface


View Details..

Overview of Therapeutic Inertia in Diabetes: Prevalence, Causes, and Consequences

Many people with diabetes do not achieve individualized treatment targets. Therapeutic inertia, the underuse of effective therapies in preventing serious clinical end points, is a frequent, important contributor to this failure. Clinicians, patients, health systems, payors, and producers of medications, devices, and other products for those with diabetes all play a role in the development of therapeutic inertia and can all help to reduce it.


View Details..

Why Are We Stuck? Therapeutic Inertia in Diabetes Education

Diabetes educators can be challenged by therapeutic inertia, as has been documented with other health care providers. There are many contributing factors related to the educators themselves, their patients, and the health care system in which they operate. To address this potentially significant barrier to quality patient care, diabetes educators can adopt numerous strategies to maximize their impact and address the factors contributing to therapeutic inertia in their practices.


View Details..

Therapeutic Inertia in Pediatric Diabetes: Challenges to and Strategies for Overcoming Acceptance of the Status Quo

Despite significant advances in therapies for pediatric type 1 diabetes, achievement of glycemic targets remains elusive, and management remains burdensome for patients and their families. This article identifies common challenges in diabetes management at the patient-provider and health care system levels and proposes practical approaches to overcoming therapeutic inertia to enhance health outcomes for youth with type 1 diabetes.


View Details..

Diabetes, Therapeutic Inertia, and Patients Medication Experience

Factors contributing to therapeutic inertia related to patients’ medication experiences include concerns about side effects and out-of-pocket costs, stigmatization for having diabetes, confusion about frequent changes in evidence-based guidelines, low health literacy, and social determinants of health. A variety of solutions to this multifactorial problem may be necessary, including integrating pharmacists into interprofessional care teams, using medication refill synchronization programs, maximizing time with patients to discuss fears and concerns, being cognizant of language used to discuss diabetes-related topics, and avoiding stigmatizing patients. Managing diabetes successfully is a team effort, and the full commitment of all team members (including patients) is required to achieve desired outcomes through an individualized approach.


View Details..

A Behavioral Perspective of Therapeutic Inertia: A Look at the Transition to Insulin Therapy

From a behavioral perspective, therapeutic inertia can happen when obstacles to changing a diabetes treatment plan outweigh perceived benefits. There is a complex interaction of important treatment-related obstacles for people with diabetes (PWD), their treating health care professional (HCP), and the clinical setting in which they interact. Tipping the scales toward more effective action involve strategies that increase perceptions of the benefits of treatment intensification while addressing important obstacles so that treatment changes are seen by both PWD and HCPs as worthwhile and achievable.


View Details..

Therapeutic Inertia in People With Type 2 Diabetes in Primary Care: A Challenge That Just Wont Go Away

Therapeutic inertia is a prevalent problem in people with type 2 diabetes in primary care and affects clinical outcomes. It arises from a complex interplay of patient-, clinician-, and health system–related factors. Ultimately, clinical practice guidelines have not made an impact on improving glycemic targets over the past decade. A more proactive approach, including focusing on optimal combination agents for early glycemic durability, may reduce therapeutic inertia and improve clinical outcomes.


View Details..

Therapeutic Inertia: Still a Long Way to Go That Cannot Be Postponed

In the context of type 2 diabetes, the definition of therapeutic inertia should include the failure not only to intensify therapy, but also to deintensify treatment when appropriate and should be distinguished from appropriate inaction in cases justified by particular circumstances. Therapy should be intensified when glycemic control deteriorates to prevent long periods of hyperglycemia, which increase the risk of complications. Strategic plans to overcome therapeutic inertia must include actions focused on patients, prescribers, health systems, and payers. Therapeutic inertia affects the management of glycemia, hypertension, and lipid disorders, all of which increase the risk for cardiovascular diseases. Thus, multifactorial interventions that act on additional therapeutic goals beyond glycemia are needed.


View Details..

Oral Health Status of Hospitalized Patients With Type 2 Diabetes

Background

Diabetes is associated with poor oral health, as well as reduced access to dental care. A large percentage of patients hospitalized in the United States carry a diagnosis of diabetes; however, the oral health status of patients with diabetes who are hospitalized is unknown.

Methods

All patients meeting inclusion criteria on the general medicine service of a tertiary care hospital were invited to participate. Subjects were asked about their access to dental care and perceptions of their oral health. A dental hygienist conducted examinations, including decayed, missing, and filled teeth (DMFT) and periodontal screening and recording (PSR) indices on a subset of subjects.

Results

The 105 subjects had a mean age of 69 ± 12 years and a median A1C of 7.5 ± 2.1%. Rates of comorbidity and polypharmacy were high. The mean number of DMFT was 23.0 ± 7.2, with 10.1 ± 7.2 missing teeth. Forty- four percent of subjects had a removable prosthesis. Sixty-eight percent had a PSR index ≥4 in at least one sextant, indicating moderate periodontal disease.

Conclusion

Rates of missing teeth, removable prostheses, and periodonal inflammation were high among hospitalized patients with diabetes, but patients did not perceive their oral health to be poor. Health care providers should be aware of the oral health risks of patients with diabetes during hospitalization, and dentists should consider screening patients with diabetes for recent hospitalization.


View Details..

Secular Trends in Information Communications Technology: Access, Use, and Attitudes of Young and Older Patients With Diabetes

Background

Advances in information communications technology (ICT) provide opportunities for enhanced diabetes care. Knowledge of the more acceptable communication modalities in patients of different ages will help to inform the direction of future innovations.

Methods

An anonymous ICT survey (examining access and use of mobile phones, computers, tablets, and the Internet and attitudes toward e-mail, Web-based consultations, and online peer-support) was conducted at the Royal Prince Alfred Hospital Diabetes Centre in Sydney, Australia. Survey deployment occurred during 4-month periods in 2012 and 2017. Respondents were stratified by current age (<40 or ≥40 years).

Results

A total of 614 unselected patients (20% with type 1 diabetes, 55% with type 2 diabetes, 13% with gestational diabetes mellitus, and 12% with an undisclosed type of diabetes) completed the survey. Access to ICT increased from 89% in 2012 to 97% in 2017. The most commonly owned device was a mobile phone (87% ownership in 2017). Increase in mobile Internet usage in the <40 years of age subgroup was significant (P = 0.04). Significant increases in Internet access and smartphone feature use were observed in patients aged ≥40 years (P ≤0.001 for all). Overall use of short message service (SMS, or text messaging) was high (90 and 80% for ages <40 and ≥40 years, respectively). Use of digital applications was low, even among the young (45% in 2017). Comfort with online consultations (40%) and support groups (32%) was also low.

Conclusion

Access to and acceptance and use of ICT is high, especially in those <40 years of age; however, the greatest increases were seen in those aged ≥40 years. High penetrance of mobile phones and text messaging in all age-groups would suggest that innovations involving an SMS platform have the greatest potential to enhance diabetes care.


View Details..

Impact of a Multidisciplinary, Endocrinologist-Led Shared Medical Appointment Model on Diabetes-Related Outcomes in an Underserved Population

A multidisciplinary endocrinologist-led shared medical appointment (SMA) model showed statistically significant reductions in A1C from baseline over 3 years that were not significantly different from appointments with endocrinologists or primary care providers alone within a resource-poor population. Similarly, the SMA model achieved clinical outcomes on par with endocrinologist-only visits with the added benefit of improving endocrine provider productivity and specialty access for patients. Greater patient engagement with the SMA model was associated with significantly lower A1C.


View Details..

Its All About Access!

Editor’s Note: This article is adapted from a speech Ms. Youssef delivered as President, Health Care & Education of the American Diabetes Association at its 79th Scientific Sessions in San Francisco, CA, on 8 June 2019. A webcast of the speech can be viewed on ADA’s DiabetesPro website at professional.diabetes.org/webcast/president-health-care-education-address%E2%80%94it%E2%80%99s-all-about-access.


View Details..

The Most Important Thing We Give to People Is Hope: Overcoming Stigma in Diabetes and Obesity

Editor’s Note: This article is adapted from the address Ms. Valentine delivered as the recipient of the American Diabetes Association’s (ADA’s) Outstanding Educator in Diabetes Award for 2019. She delivered the address in June 2019 at the Association’s 79th Scientific Sessions in San Francisco, CA. A webcast of this speech is available for viewing at the ADA website (professional.diabetes.org/webcast/outstanding-educator-diabetes-award-lecture%E2%80%94-most-important-thing-we-give-people-hope).


View Details..

#DiabetesPsychologyMatters

Editor’s Note: This article was adapted from the address Dr. Snoek delivered as the recipient of the American Diabetes Association’s Richard R. Rubin Award for 2019. This award recognizes a behavioral researcher who has made outstanding, innovative contributions to the study and understanding of the behavioral aspects of diabetes in diverse populations. Dr. Snoek delivered the address in June 2019 at the Association’s 79th Scientific Sessions in San Francisco, CA.


View Details..

Development and Implementation of the Readiness Assessment of Emerging Adults With Type 1 Diabetes Diagnosed in Youth (READDY) Tool


View Details..

Increased Cardiovascular Response to a 6-Minute Walk Test in People With Type 2 Diabetes

Background and objective

Exercise is a cornerstone of management for type 2 diabetes; however, little is known about the cardiovascular (CV) response to submaximal functional exercise in people with type 2 diabetes. The aim of this study was to compare performance and CV response during a 6-minute walk test (6MWT) between people with type 2 diabetes and matched control subjects.

Methods

CV response and distance walked during the 6MWT were assessed in 30 people with type 2 diabetes, matched for age, body composition, physical activity, and estimated aerobic capacity with 34 control subjects (type 2 diabetes group: 16 men, 59.8 ± 8.8 years of age, 33.3 ± 10.9% body fat, physical activity of 7,968 ± 3,236 steps·day–1, estimated aerobic capacity 31.9 ± 11.1 mLO2·kg–1·min–1; control group: 19 men, 59.3 ± 8.8 years of age, 32.7 ± 8.5% body fat, physical activity 8,228 ± 2,941 steps·day–1, estimated aerobic capacity 34.9 ± 15.4 mLO2·kg–1·min–1).

Results

People with type 2 diabetes walked a similar distance (590 ± 75 vs. 605 ± 69 m; P = 0.458) compared with control subjects during the 6MWT and had similar ratings of perceived exertion (RPE) after the 6MWT (4.19 ± 1.56 vs. 3.65 ± 1.54, P = 0.147). However, at the end of the 6MWT, people with type 2 diabetes had a higher heart rate (108 ± 23 vs. 95 ± 18 beats·min–1; P = 0.048), systolic blood pressure (169 ± 26 vs. 147 ± 22 mmHg, P = 0.003), and rate-pressure product (18,762 ± 5,936 vs. 14,252 ± 4,330, P = 0.009) than control subjects.

Conclusion

Although people with type 2 diabetes had similar performance and RPE during the 6MWT compared with control subjects, the CV response was greater for people with type 2 diabetes, indicating greater cardiac effort for similar perceived effort and performance of 6MWT. These data suggest that observation and prescription of exercise intensity should include both perceived effort and CV response.


View Details..

Journal of Pharmacology and Experimental Therapeutics


View Details..

Mouse Colonic Epithelial Cells Functionally Express the Histamine H4 Receptor [Gastrointestinal, Hepatic, Pulmonary, and Renal]

We hypothesized that, in mice, histamine via the histamine receptor subtype 4 (H4R) on colon epithelial cells affects epithelial barrier integrity, perturbing physiologic function of the colonic mucosa and thus aggravating the severity of colitis. To test this hypothesis, bone marrow–chimeric mice were generated from H4R knockout (H4R–/–) and wild-type (WT) BALB/cJ mice and subjected to the dextrane sodium sulfate (DSS)-induced acute colitis model. Clinical symptoms and pathohistological derangements were scored. Additionally, total RNA was extracted from either mouse whole-colon homogenates or primary cell preparations enriched for epithelial cells, and gene expression was analyzed by real-time quantitative polymerase chain reaction. The impact of the H4R on epithelial barrier function was assessed by measurement of transepithelial electrical resistence of organoid-derived two-dimensional monolayers from H4R–/– and WT mice using chopstick electrodes. Bone marrow–chimeric mice with genetic depletion of the H4R in nonhematopoietic cells exhibited less severe DSS-induced acute colitis symptoms compared with WT mice, indicating a functional proinflammatory expression of H4R in nonimmune cells of the colon. Analysis of H4R expression revealed the presence of H4R mRNA in colon epithelial cells. This expression could be confirmed and complemented by functional analyses in organoid-derived epithelial cell monolayers. Thus, we conclude that the H4R is functionally expressed in mouse colon epithelial cells, potentially modulating mucosal barrier integrity and intestinal inflammatory reactions, as was demonstrated in the DSS-induced colitis model, in which presence of the H4R on nonhematopoietic cells aggravated the inflammatory phenotype.

SIGNIFICANCE STATEMENT

The histamine H4 receptor (H4R) is functionally expressed on mouse colon epithelial cells, thereby aggravating dextrane sodium sulfate–induced colitis in BALB/cJ mice. Histamine via the H4R reduces transepithelial electrical resistance of colon epithelial monolayers, indicating a function of H4R in regulation of epithelial barrier integrity.


View Details..

COMT-Catalyzed Palmitic Acid Methyl Ester Biosynthesis in Perivascular Adipose Tissue and its Potential Role Against Hypertension [Cardiovascular]

Decreased release of palmitic acid methyl ester (PAME), a vasodilator, from perivascular adipose tissue (PVAT) might contribute to hypertension pathogenesis. However, the PAME biosynthetic pathway remains unclear. In this study, we hypothesized that PAME is biosynthesized from palmitic acid (PA) via human catechol-O-methyltransferase (COMT) catalysis and that decreased PAME biosynthesis plays a role in hypertension pathogenesis. We compared PAME biosynthesis between age-matched normotensive Wistar Kyoto (WKY) rats and hypertensive spontaneously hypertensive rats (SHRs) and investigated the effects of losartan treatment on PAME biosynthesis. Computational molecular modeling indicated that PA binds well at the active site of COMT. Furthermore, in in vitro enzymatic assays in the presence of COMT and S-5'-adenosyl-L-methionine (AdoMet), the stable isotope [13C16]-PA was methylated to form [13C16]-PAME in incubation medium or the Krebs–Henseleit solution containing 3T3-L1 adipocytes or rat PVAT. The adipocytes and PVATs expressed membrane-bound (MB)-COMT and soluble (S)-COMT proteins. [13C16]-PA methylation to form [13C16]-PAME in 3T3-L1 adipocytes and rat PVAT was blocked by various COMT inhibitors, such as S-(5'-adenosyl)-L-homocysteine, adenosine-2',3'-dialdehyde, and tolcapone. MB- and S-COMT levels in PVATs of established SHRs were significantly lower than those in PVATs of age-matched normotensive WKY rats, with decreased [13C16]-PA methylation to form [13C16]-PAME. This decrease was reversed by losartan, an angiotensin II (Ang II) type 1 receptor antagonist. Therefore, PAME biosynthesis in rat PVAT is dependent on AdoMet, catalyzed by COMT, and decreased in SHRs, further supporting the role of PVAT/PAME in hypertension pathogenesis. Moreover, the antihypertensive effect of losartan might be due partly to its increased PAME biosynthesis.

SIGNIFICANCE STATEMENT

PAME is a key PVAT-derived relaxing factor. We for the first time demonstrate that PAME is synthesized through PA methylation via the S-5'-adenosyl-L-methionine–dependent COMT catalyzation pathway. Moreover, we confirmed PVAT dysfunction in the hypertensive state. COMT-dependent PAME biosynthesis is involved in Ang II receptor type 1–mediated blood pressure regulation, as evidenced by the reversal of decreased PAME biosynthesis in PVAT by losartan in hypertensive rats. This finding might help in developing novel therapeutic or preventive strategies against hypertension.


View Details..

A Mechanistic and Translational Pharmacokinetic-Pharmacodynamic Model of Abicipar Pegol and Vascular Endothelial Growth Factor Inhibition [Drug Discovery and Translational Medicine]

Abicipar pegol (abicipar) is a novel DARPin therapeutic and highly potent vascular endothelial growth factor (VEGF) inhibitor intended for the treatment of neovascular age-related macular degeneration (nAMD). Here we develop a translational pharmacokinetic/pharmacodynamic (PK/PD) model for abicipar to guide dosing regimens in the clinic. The model incorporated abicipar-VEGF binding kinetics, VEGF expression levels, and VEGF turnover rates to describe the ocular and systemic PK data collected from the vitreous, aqueous humor (AH), choroid, retina, and serum of rabbits after a 1-mg abicipar intravitreal (IVT) dose. The model was translated to humans using human-specific mechanistic parameters and refitted to human serum and AH concentrations from patients with diabetic macular edema and nAMD. The model was then used to simulate 8-, 12- (quarterly), and 16-week dosing intervals in the clinic. Simulations of 2 mg abicipar IVT at 8-week or quarterly dosing in humans indicates minimum steady-state vitreal concentrations are maintained above both in vitro IC50 and in vivo human IC50 values. The model predicted virtually complete VEGF inhibition for the 8-week and quarterly dosing schedule during the 52-week treatment period. In the 16-week schedule, clinically significant VEGF inhibition was maintained during the 52-week period. The model quantitatively described abicipar-VEGF target engagement leading to rapid reduction of VEGF and a long duration of VEGF inhibition demonstrating the clinical feasibility of up to a 16-week dosing interval. Abicipar is predicted to reduce IVT dosing compared with other anti-VEGF therapies with the potential to lessen patient treatment burden.

SIGNIFICANCE STATEMENT

Current anti-VEGF treatments for neovascular age-related macular degeneration require frequent (monthly) intravitreal injections and monitoring, which increases patient burden. We developed a mechanistic pharmakinetic/pharmadynamic model to describe the interaction between abicipar (a novel VEGF inhibitor) and VEGF to evaluate the duration of action. The model demonstrates extended abicipar-VEGF target engagement leading to clinical feasibility of up to a 16-week dosing interval. Our model predicted that abicipar 8-week and quarterly dosing schedules maintain virtually complete VEGF inhibition during the 52-week period.


View Details..

Pharmacological Characterization of Apraglutide, a Novel Long-Acting Peptidic Glucagon-Like Peptide-2 Agonist, for the Treatment of Short Bowel Syndrome [Drug Discovery and Translational Medicine]

Glucagon-like peptide-2 (GLP-2) agonists have therapeutic potential in clinical indications in which the integrity or absorptive function of the intestinal mucosa is compromised, such as in short bowel syndrome (SBS). Native hGLP-2, a 33–amino acid peptide secreted from the small intestine, contributes to nutritional absorption but has a very short half-life because of enzymatic cleavage and renal clearance and thus is of limited therapeutic value. The GLP-2 analog teduglutide (Revestive/Gattex; Shire Inc.) has been approved for use in SBS since 2012 but has a once-daily injection regimen. Pharmacokinetic (PK) and pharmacodynamic studies confirm that apraglutide, a novel GLP-2 analog, has very low clearance, long elimination half-life, and high plasma protein binding compared with GLP-2 analogs teduglutide and glepaglutide. Apraglutide and teduglutide retain potency and selectivity at the GLP-2 receptor comparable to native hGLP-2, whereas glepaglutide was less potent and less selective. In rat intravenous PK studies, hGLP-2, teduglutide, glepaglutide, and apraglutide had clearances of 25, 9.9, 2.8, and 0.27 ml/kg per minute, respectively, and elimination half-lives of 6.4, 19, 16, and 159 minutes, respectively. The unique PK profile of apraglutide administered via intravenous and subcutaneous routes was confirmed in monkey and minipig and translated into significantly greater in vivo pharmacodynamic activity, measured as small intestinal growth in rats. Apraglutide showed greater intestinotrophic activity than the other peptides when administered at less-frequent dosing intervals because of its prolonged half-life. We postulate that apraglutide offers several advantages over existing GLP-2 analogs and is an excellent candidate for the treatment of gastrointestinal diseases, such as SBS.

SIGNIFICANCE STATEMENT

Apraglutide is a potent and selective GLP-2 agonist with an extremely low clearance and prolonged elimination half-life, which differentiates it from teduglutide (the only approved GLP-2 agonist). The enhanced pharmacokinetics of apraglutide will benefit patients by enabling a reduced dosing frequency and removing the need for daily injections.


View Details..

Glycoconjugation as a Promising Treatment Strategy for Psoriasis [Minireviews]

Despite the progress in the development of novel treatment modalities, a significant portion of patients with psoriasis remains undertreated relative to the severity of their disease. Recent evidence points to targeting the glucose transporter 1 and sugar metabolism as a novel therapeutic strategy for the treatment of psoriasis and other hyperproliferative skin diseases. In this review, we discuss glycoconjugation, an approach that facilitates the pharmacokinetics of cytotoxic molecules and ensures their preferential influx through glucose transporters. We propose pathways of glycoconjugate synthesis to increase effectiveness, cellular selectivity, and tolerability of widely used antipsoriatic drugs. The presented approach exploiting the heightened glucose requirement of proliferating keratinocytes bears the potential to revolutionize the management of psoriasis.

SIGNIFICANCE STATEMENT

Recent findings concerning the fundamental role of enhanced glucose metabolism and glucose transporter 1 overexpression in the pathogenesis of psoriasis brought to light approaches that proved successful in cancer treatment. Substantial advances in the emerging field of glycoconjugation highlight the rationale for the development of glucose-conjugated antipsoriatic drugs to increase their effectiveness, cellular selectivity, and tolerability. The presented approach offers a novel therapeutic strategy for the treatment of psoriasis and other hyperproliferative skin diseases.


View Details..

Correction to "Probing the Assembly of HDL Mimetic, Drug Carrying Nanoparticles Using Intrinsic Fluorescence" [Erratum]


View Details..

NO-Releasing Nanoparticles Ameliorate Detrusor Overactivity in Transgenic Sickle Cell Mice via Restored NO/ROCK Signaling [Cellular and Molecular]

Sickle cell disease (SCD) is associated with overactive bladder (OAB). Detrusor overactivity, a component of OAB, is present in an SCD mouse, but the molecular mechanisms for this condition are not well-defined. We hypothesize that nitric oxide (NO)/ ras homolog gene family (Rho) A/Rho-associated kinase (ROCK) dysregulation is a mechanism for detrusor overactivity and that NO-releasing nanoparticles (NO-nps), a novel NO delivery system, may serve to treat this condition. Male adult SCD transgenic, combined endothelial NO synthases (eNOSs) and neuronal NOS (nNOS) gene-deficient (dNOS–/–), and wild-type (WT) mice were used. Empty nanoparticle or NO-np was injected into the bladder, followed by cystometric studies. The expression levels of phosphorylated eNOS (Ser-1177), protein kinase B (Akt) (Ser-473), nNOS (Ser-1412), and myosin phosphatase target subunit 1 (MYPT1) (Thr-696) were assessed in the bladder. SCD and dNOS–/– mice had a greater (P < 0.05) number of voiding and nonvoiding contractions compared with WT mice, and they were normalized by NO-np treatment. eNOS (Ser-1177) and AKT (Ser-473) phosphorylation were decreased (P < 0.05) in the bladder of SCD compared with WT mice and reversed by NO-np. Phosphorylated MYPT1, a marker of the RhoA/ROCK pathway, was increased (P < 0.05) in the bladder of SCD mice compared with WT and reversed by NO-np. nNOS phosphorylation on positive (Ser-1412) regulatory site was decreased (P < 0.05) in the bladder of SCD mice compared with WT and was not affected by NO-np. NO-nps did not affect any of the measured parameters in WT mice. In conclusion, dysregulation of NO and RhoA/ROCK pathways is associated with detrusor overactivity in SCD mice; NO-np reverses these molecular derangements in the bladder and decreases detrusor overactivity.

SIGNIFICANCE STATEMENT

Voiding abnormalities commonly affect patients with sickle cell disease (SCD) but are problematic to treat. Clarification of the science for this condition in an animal model of SCD may lead to improved interventions for it. Our findings suggest that novel topical delivery of a vasorelaxant agent nitric oxide into the bladder of these mice corrects overactive bladder by improving deranged bladder physiology regulatory signaling.


View Details..

Translational Pharmacokinetic-Pharmacodynamic Modeling for an Orally Available Novel Inhibitor of Epigenetic Regulator Enhancer of Zeste Homolog 2 [Drug Discovery and Translational Medicine]

PF06821497 has been identified as an orally available small-molecule enhancer of zeste homolog 2 inhibitor. The objectives of the present study were to characterize pharmacokinetic-pharmacodynamic-disease relationships of PF06821497 in xenograft mouse models with diffuse large B-cell lymphoma (Karpas422). An indirect-response model reasonably fit dose-dependent pharmacodynamic responses [histone H3 on lysine 27 (H3K27) me3 inhibition] with an unbound EC50 of 76 nM, whereas a signal-transduction model sufficiently fit dose-dependent disease responses (tumor growth inhibition) with an unbound tumor stasis concentration (Tsc) of 168 nM. Thus, effective concentration for 70% of maximal effect (EC70) for H3K27me3 inhibition was roughly comparable to Tsc, suggesting that 70% H3K27me3 inhibition could be required for tumor stasis. Consistently, an integrated pharmacokinetic-pharmacodynamic-disease model adequately describing tumor growth inhibition also suggested that ~70% H3K27me3 inhibition was associated with tumor stasis. Based on these results, we would propose that an EC70 estimate for H3K27me3 inhibition corresponding to tumor stasis could be considered a minimum target efficacious concentration of PF06821497 in cancer patients.

SIGNIFICANCE STATEMENT

Using a mathematical modeling approach, the quantitative relationships of an orally available anticancer small-molecule enhancer of zeste homolog 2 inhibitor, PF06821497, were characterized among pharmacokinetics, pharmacodynamic biomarker inhibition, and disease responses in nonclinical xenograft models with diffuse large B-cell lymphoma. The modeling results suggest that >70% histone H3 on lysine 27 (H3K27) me3 inhibition would be required for tumor stasis (i.e., 100% tumor growth inhibition). Accordingly, we would propose that an effective concentration for 70% of maximal effect estimate for H3K27me3 inhibition could be considered a minimum target efficacious concentration of PF06821497 in cancer patients.


View Details..

The Endocannabinoid System Alleviates Pain in a Murine Model of Cancer-Induced Bone Pain [Drug Discovery and Translational Medicine]

Metastatic breast cancer is prevalent worldwide, and one of the most common sites of metastasis is long bones. Of patients with disease, the major symptom is pain, yet current medications fail to adequately result in analgesic efficacy and present major undesirable adverse effects. In our study, we investigate the potential of a novel monoacylglycerol lipase (MAGL) inhibitor, MJN110, in a murine model of cancer-induced bone pain. Literature has previously demonstrated that MAGL inhibitors function to increase the endogenous concentrations of 2-arachydonylglycerol, which then activates CB1 and CB2 receptors to inhibit inflammation and pain. We demonstrate that administration of MJN110 significantly and dose dependently alleviates spontaneous pain behavior during acute administration compared with vehicle control. In addition, MJN110 maintains its efficacy in a chronic-dosing paradigm over the course of 7 days without signs of receptor sensitization. In vitro analysis of MJN110 demonstrated a dose-dependent and significant decrease in cell viability and proliferation of 66.1 breast adenocarcinoma cells to a greater extent than KML29, an alternate MAGL inhibitor, or the CB2 agonist JWH015. Chronic administration of the compound did not appear to affect tumor burden, as evidenced by radiograph or histologic analysis. Together, these data support the application for MJN110 as a novel therapeutic for cancer-induced bone pain.

SIGNIFICANCE STATEMENT

Current standard of care for metastatic breast cancer pain is opioid-based therapies with adjunctive chemotherapy, which have highly addictive and other deleterious side effects. The need for effective, non–opioid-based therapies is essential, and harnessing the endogenous cannabinoid system is proving to be a new target to treat various types of pain conditions. We present a novel drug targeting the endogenous cannabinoid system that is effective at reducing pain in a mouse model of metastatic breast cancer to bone.


View Details..

KPR-5714, a Novel Transient Receptor Potential Melastatin 8 Antagonist, Improves Overactive Bladder via Inhibition of Bladder Afferent Hyperactivity in Rats [Gastrointestinal, Hepatic, Pulmonary, and Renal]

Transient receptor potential (TRP) melastatin 8 (TRPM8) is a temperature-sensing ion channel mainly expressed in primary sensory neurons (A-fibers and C-fibers in the dorsal root ganglion). In this report, we characterized KPR-5714 (N-[(R)-3,3-difluoro-4-hydroxy-1-(2H-1,2,3-triazol-2-yl)butan-2-yl]-3-fluoro-2-[5-(4-fluorophenyl)-1H-pyrazol-3-yl]benzamide), a novel and selective TRPM8 antagonist, to assess its therapeutic potential against frequent urination in rat models with overactive bladder (OAB). In calcium influx assays with HEK293T cells transiently expressing various TRP channels, KPR-5714 showed a potent TRPM8 antagonistic effect and high selectivity against other TRP channels. Intravenously administered KPR-5714 inhibited the hyperactivity of mechanosensitive C-fibers of bladder afferents and dose-dependently increased the intercontraction interval shortened by intravesical instillation of acetic acid in anesthetized rats. Furthermore, we examined the effects of KPR-5714 on voiding behavior in conscious rats with cerebral infarction and in those exposed to cold in metabolic cage experiments. Cerebral infarction and cold exposure induced a significant decrease in the mean voided volume and increase in voiding frequency in rats. Orally administered KPR-5714 dose-dependently increased the mean voided volume and decreased voiding frequency without affecting total voided volume in these models. This study demonstrates that KPR-5714 improves OAB in three different models by inhibiting exaggerated activity of mechanosensitive bladder C-fibers and suggests that KPR-5714 may provide a new and useful approach to the treatment of OAB.

SIGNIFICANCE STATEMENT

TRPM8 is involved in bladder sensory transduction and plays a role in the abnormal activation in hypersensitive bladder disorders. KPR-5714, as a novel and selective TRPM8 antagonist, may provide a useful treatment for the disorders related to the hyperactivity of bladder afferent nerves, particularly in overactive bladder.


View Details..

Inner Ear Arginine Vasopressin-Vasopressin Receptor 2-Aquaporin 2 Signaling Pathway Is Involved in the Induction of Motion Sickness [Drug Discovery and Translational Medicine]

It has been identified that arginine vasopressin (AVP), vasopressin receptor 2(V2R), and the aquaporin 2 (AQP2) signaling pathway in the inner ear play important roles in hearing and balance functions through regulating the endolymph equilibrium; however, the contributions of this signaling pathway to the development of motion sickness are unclear. The present study was designed to investigate whether the activation of the AVP-V2R-AQP2 signaling pathway in the inner ear is involved in the induction of motion sickness and whether mozavaptan, a V2R antagonist, could reduce motion sickness. We found that both rotatory stimulus and intraperitoneal AVP injection induced conditioned taste aversion (a confirmed behavioral index for motion sickness) in rats and activated the AVP-V2R-AQP2 signaling pathway with a responsive V2R downregulation in the inner ears, and AVP perfusion in cultured epithelial cells from rat endolymphatic sacs induced similar changes in this pathway signaling. Vestibular training, V2R antagonist mozavaptan, or PKA inhibitor H89 blunted these changes in the V2R-AQP2 pathway signaling while reducing rotatory stimulus– or DDAVP (a V2R agonist)-induced motion sickness in rats and dogs. Therefore, our results suggest that activation of the inner ear AVP-V2R-AQP2 signaling pathway is potentially involved in the development of motion sickness; thus, mozavaptan targeting AVP V2Rs in the inner ear may provide us with a new application option to reduce motion sickness.

SIGNIFICANCE STATEMENT

Motion sickness affects many people traveling or working. In the present study our results showed that activation of the inner ear arginine vasopressin-vaspopressin receptor 2 (V2R)-aquaporin 2 signaling pathway was potentially involved in the development of motion sickness and that blocking V2R with mozavaptan, a V2R antagonist, was much more effective in reducing motion sickness in both rat and dog; therefore, we demonstrated a new mechanism to underlie motion sickness and a new candidate drug to reduce motion sickness.


View Details..

Hepatic Transporter Alterations by Nuclear Receptor Agonist T0901317 in Sandwich-Cultured Human Hepatocytes: Proteomic Analysis and PBPK Modeling to Evaluate Drug-Drug Interaction Risk [Metabolism, Transport, and Pharmacogenomics]

In vitro approaches for predicting drug-drug interactions (DDIs) caused by alterations in transporter protein regulation are not well established. However, reports of transporter regulation via nuclear receptor (NR) modulation by drugs are increasing. This study examined alterations in transporter protein levels in sandwich-cultured human hepatocytes (SCHH; n = 3 donors) measured by liquid chromatography–tandem mass spectrometry–based proteomic analysis after treatment with N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide (T0901317), the first described synthetic liver X receptor agonist. T0901317 treatment (10 μM, 48 hours) decreased the levels of organic cation transporter (OCT) 1 (0.22-, 0.43-, and 0.71-fold of control) and organic anion transporter (OAT) 2 (0.38-, 0.38-, and 0.53-fold of control) and increased multidrug resistance protein (MDR) 1 (1.37-, 1.48-, and 1.59-fold of control). The induction of NR downstream gene expression supports the hypothesis that T0901317 off-target effects on farnesoid X receptor and pregnane X receptor activation are responsible for the unexpected changes in OCT1, OAT2, and MDR1. Uptake of the OCT1 substrate metformin in SCHH was decreased by T0901317 treatment. Effects of decreased OCT1 levels on metformin were simulated using a physiologically-based pharmacokinetic (PBPK) model. Simulations showed a clear decrease in metformin hepatic exposure resulting in a decreased pharmacodynamic effect. This DDI would not be predicted by the modest changes in simulated metformin plasma concentrations. Altogether, the current study demonstrated that an approach combining SCHH, proteomic analysis, and PBPK modeling is useful for revealing tissue concentration–based DDIs caused by unexpected regulation of hepatic transporters by NR modulators.

SIGNIFICANCE STATEMENT

This study utilized an approach combining sandwich-cultured human hepatocytes, proteomic analysis, and physiologically based pharmacokinetic modeling to evaluate alterations in pharmacokinetics (PK) and pharmacodynamics (PD) caused by transporter regulation by nuclear receptor modulators. The importance of this approach from a mechanistic and clinically relevant perspective is that it can reveal drug-drug interactions (DDIs) caused by unexpected regulation of hepatic transporters and enable prediction of altered PK and PD changes, especially for tissue concentration–based DDIs.


View Details..





List your Domains for sale @ DomainMoon.com