A new report offers insights that can help clinicians distinguish between patients with COVID-19 infections and those with other conditions that may mimic COVID-19 symptoms.
The COVID-19 pandemic has placed unprecedented pressure on societies worldwide, given the pandemic's rapid, often deadly spread. In health care, the pandemic has raised the pressing question of how society should allocate scarce resources during a crisis.
Scientists demonstrate a completely new way of treating snakebites. The team have shown that the repurposing of an existing medicine, commonly used to treat mercury poisoning, is an effective oral therapy for the treatment of certain hemotoxic snakebites.
Adding yoga to your regularly prescribed migraine treatment may be better than medication alone, according to a new study. The new research suggests yoga may help people with migraines have headaches that happen less often, don't last as long and are less painful.
Clinicians from two hospitals in Boston report that the majority of even the sickest patients with COVID-19 -- those who require ventilators in intensive care units -- get better when they receive existing guideline-supported treatment for respiratory failure.
Foods, such as French fries, cheese, cookies, soda, and sports and energy drinks, are commonly found in the diets of United States adults with inflammatory bowel disease, according to a new study.
Focused ultrasound, the researchers hope, could revolutionize treatment for conditions from Alzheimer's to epilepsy to brain tumors -- and even help repair the devastating damage caused by stroke.
Obese Europeans who are treated with cholesterol lowering drugs have not only lower values of blood LDL cholesterol and markers of inflammation but in addition a more healthy gut bacteria profile than those obese who are not prescribed statins.
Your house number could be the key to the safe relaxation of COVID-19-related restrictions if governments follow a new exit strategy, which proposes the use of an 'odds-and-evens' approach to allowing people to head back to work and enjoy other activities after weeks of lockdown.
This research shows how different populations of people share most of the genetic susceptibilities to developing type 2 diabetes but do have some different genetic variations that can make them more or less susceptible to developing the condition.
Scientists set out to investigate a potential role of the gut microbiota in the development of cardio-metabolic diseases. They ended up identifying the common cholesterol-lowering drug statins as a potential microbiota-modulating therapeutic.
People who attended religious services at least once a week were significantly less likely to die from 'deaths of despair,' including deaths related to suicide, drug overdose, and alcohol poisoning, according to new research.
Researchers have uncovered how bats can carry the Middle East respiratory syndrome (MERS) coronavirus without getting sick -- research that could shed light on how coronaviruses make the jump to humans and other animals.
Researchers have made a breakthrough in understanding the structure of a key genetic molecule, called RNA, and revealing for the first time how these changes impact RNA's function. The research team developed a bioinformatics technique to resolve separate structures of RNA rather than viewing them as a 'blur' that averaged multiple structures. This underpinned their discovery that the structure of RNA can influence how cells function.
Environmental biologists have warned that the potential spread of COVID-19 via sewage 'must not be neglected' in the battle to protect human health.
Researchers have used synchrotron light to study what happens to the nerves in diabetes. The technique shows the 3D-structure of nerve fibers in very high resolution.
Miniature devices that could be developed into safe, high-resolution imaging technology, with uses such as helping doctors identify potentially deadly cancers and treat them early, have been created.
A new computational method for assigning the donor in single cell RNA sequencing experiments provides an accurate way to unravel data from a mixture of people. The Souporcell method could help study how genetic variants in different people affect which genes are expressed during infection or response to drugs, and help research into transplants, personalized medicine and malaria.
A new study found that organic nitrates do not have clinically relevant effects on bone mineral density or bone turnover in postmenopausal women, and the medications caused significant side effects.
Researchers have announced the isolation and characterization of a unique antibody that can bind to the virus that causes COVID-19 (SARS-CoV-2). The team has established that the antibody binds to a conserved epitope on the spike protein of SARS-CoV-2.
Parents should not feel pressured to make their young children undertake structured learning or achieve specific tasks, particularly during lockdown. A new study of children under the age of two has found that parents who take a more flexible approach to their child's learning can - for children who were easy babies - minimize behavioral problems during toddlerhood.
A new research study, investigating how service robots in hotels could help redefine leadership and boost the hospitality industry, has taken on new significance in the light of the seismic impact of the Covid-19 outbreak on tourism and hospitality.
Researchers have developed a set of recommendations to manage the mental health of frontline medical workers during viral outbreaks, such as COVID-19.
More than 3.9 million people have been sickened and more than 270,000 killed by the coronavirus around the world. This map is updated daily.
Posttranscriptional regulation of mRNA is a powerful and tightly controlled process in which cells command the integrity, diversity, and abundance of their protein products. RNA-binding proteins (RBPs) are the principal players that control many intermediary steps of posttranscriptional regulation. Recent advances in this field have discovered the importance of RBPs in hematological diseases. Herein we will review a number of RBPs that have been determined to play critical functions in leukemia and lymphoma. Furthermore, we will discuss the potential therapeutic strategies that are currently being studied to specifically target RBPs in these diseases.
For years, clinical and basic researchers have been aware of the presence of PTEN in the nucleus in cell culture, animal models, and both healthy and diseased human tissues. Despite the early recognition of nuclear PTEN, the understanding of the mechanisms of its nuclear localization, function in the nucleus, and importance in biology and human disease has been lacking. Over the last decade, emerging concepts for the complex involvement of nuclear PTEN in a variety of processes, including genome maintenance and DNA repair, cell-cycle control, gene expression, and DNA replication, are illuminating what could prove to be the key path toward a full understanding of PTEN function in health and disease. Dysregulation of nuclear PTEN is now considered an important aspect of the etiology of many pathologic conditions, prompting reconsideration of the therapeutic approaches aimed at countering the consequences of PTEN deficiency. This new knowledge is fueling the development of innovative therapeutic modalities for a broad spectrum of human conditions, from cancer and metabolic diseases, to neurological disorders and autism.
Consistently, the field of genetic counseling has advocated that parents be advised to defer elective genetic testing of minors until adulthood to prevent a range of potential harms, including stigma, discrimination, and the loss of the child's ability to decide for him- or herself as an adult. However, consensus around the policy of "defer-when-possible" obscures the extent to which this norm is currently under siege. Increasingly, routine use of full or partial genome sequencing challenges our ability to control what is discovered in childhood or, when applied in a prenatal context, even before birth. The expansion of consumer-initiated genetic testing services challenges our ability to restrict what is available to minors. As the barriers to access crumble, medical professionals should proceed with caution, bearing in mind potential risks and continuing to assess the impact of genetic testing on this vulnerable population.
Preimplantation genetic testing (PGT) is a reproductive technology that, in the course of in vitro fertilization (IVF), allows prospective parents to select their future offspring based on genetic characteristics. PGT could be seen as an exercise of reproductive liberty, thus potentially raising significant socioethical and legal controversy. In this review, we examine—from a comparative perspective—variations in policy approaches to the regulation of PGT. We draw on a sample of 19 countries (Australia, Austria, Belgium, Brazil, Canada, China, France, Germany, India, Israel, Italy, Japan, Mexico, Netherlands, Singapore, South Korea, Switzerland, United Kingdom, and the United States) to provide a global landscape of the spectrum of policy and legislative approaches (e.g., restrictive to permissive, public vs. private models). We also explore central socioethical and policy issues and contentious applications, including permissibility criteria (e.g., medical necessity), nonmedical sex selection, and reproductive tourism. Finally, we further outline genetic counseling requirements across policy approaches.
Hepatitis C virus (HCV) is an important and underreported infectious disease, causing chronic infection in ~71 million people worldwide. The limited host range of HCV, which robustly infects only humans and chimpanzees, has made studying this virus in vivo challenging and hampered the development of a desperately needed vaccine. The restrictions and ethical concerns surrounding biomedical research in chimpanzees has made the search for an animal model all the more important. In this review, we discuss different approaches that are being pursued toward creating small animal models for HCV infection. Although efforts to use a nonhuman primate species besides chimpanzees have proven challenging, important advances have been achieved in a variety of humanized mouse models. However, such models still fall short of the overarching goal to have an immunocompetent, inheritably susceptible in vivo platform in which the immunopathology of HCV could be studied and putative vaccines development. Alternatives to overcome this include virus adaptation, such as murine-tropic HCV strains, or the use of related hepaciviruses, of which many have been recently identified. Of the latter, the rodent/rat hepacivirus from Rattus norvegicus species-1 (RHV-rn1) holds promise as a surrogate virus in fully immunocompetent rats that can inform our understanding of the interaction between the immune response and viral outcomes (i.e., clearance vs. persistence). However, further characterization of these animal models is necessary before their use for gaining new insights into the immunopathogenesis of HCV and for conceptualizing HCV vaccines.
Germline alterations of the tumor suppressor PTEN have been extensively characterized in patients with PTEN hamartoma tumor syndromes, encompassing subsets of Cowden syndrome, Bannayan–Riley–Ruvalcaba syndrome, Proteus and Proteus-like syndromes, as well as autism spectrum disorder. Studies have shown an increase in the risk of developing specific cancer types in the presence of a germline PTEN mutation. Furthermore, outside of the familial setting, somatic variants of PTEN occur in numerous malignancies. Here we introduce and discuss the prospect of moving toward a systems pathology approach for PTEN diagnostics, incorporating clinical and molecular pathology data with the goal of improving the clinical management of patients with a PTEN mutation. Detection of a germline PTEN mutation can inform cancer surveillance and in the case of somatic mutation, have value in predicting disease course. Given that PTEN functions in the PI3K/AKT/mTOR pathway, identification of a PTEN mutation may highlight new therapeutic opportunities and/or inform therapeutic choices.
Brain metastases are associated with poor prognosis irrespective of the primary tumor they originate from. Current treatments for brain metastases are palliative, and patients with symptomatic brain metastasis have a one-year survival of <20%. Lung cancer, breast cancer, and melanoma have higher incidences of brain metastases compared with other types of cancers. However, it is not very clear why some cancers metastasize to the brain more frequently than others. Studies thus far suggest that brain-specific tropism of certain types of cancers is defined by a winning combination of the following factors: unique genetic subtypes of primary tumors or its subclones enabling detachment, dissemination, blood–brain barrier penetration, plus proliferation and survival in hypoxic low-glucose microenvironment; specific transcriptomic and epigenetic changes of colony-forming metastatic cells, allowing their outgrowth; favorable metastasis-permissive microenvironment of the brain created by interactions of cancer cells and cells in the brain through triggering inflammation, recruiting myeloid-derived suppressor cells, and promoting metabolic adaptation; immunosuppression resulting in the failure of adaptive immune response to recognize or kill cancer cells in the brain. Here, we briefly review recent advances in understanding brain metastasis organotropism and outline directions for future research.
Metastatic disease is the leading cause of death in patients with solid cancers. The progression to metastasis is a multistep process that involves detachment of tumor cells from their constraining basement membrane at the primary site, migration and intravasation into the circulation, survival in the circulation, extravasation into the secondary organ, and survival and growth at the secondary site. During these steps, tumor and immune cells interact and influence each other both within the tumor microenvironment and systemically. In particular, myeloid cells such as monocytes, macrophages, neutrophils, and myeloid-derived suppressor cells (myeloid regulatory cells) have been shown to play important roles in the metastatic process. These interactions open new avenues for targeting cancer metastasis, especially given the increasing interest in development of cancer immunotherapies. In this review, we describe the currently reported pathways and mechanisms involved in myeloid cell enhancement of the metastatic cascade.
Childbirth at any age confers a transient increased risk for breast cancer in the first decade postpartum and this window of adverse effect extends over two decades in women with late-age first childbirth (>35 years of age). Crossover to the protective effect of pregnancy is dependent on age at first pregnancy, with young mothers receiving the most benefit. Furthermore, breast cancer diagnosis during the 5- to 10-year postpartum window associates with high risk for subsequent metastatic disease. Notably, lactation has been shown to be protective against breast cancer incidence overall, with varying degrees of protection by race, multiparity, and lifetime duration of lactation. An effect for lactation on breast cancer outcome after diagnosis has not been described. We discuss the most recent data and mechanistic insights underlying these epidemiologic findings. Postpartum involution of the breast has been identified as a key mediator of the increased risk for metastasis in women diagnosed within 5–10 years of a completed pregnancy. During breast involution, immune avoidance, increased lymphatic network, extracellular matrix remodeling, and increased seeding to the liver and lymph node work as interconnected pathways, leading to the adverse effect of a postpartum diagnosis. We al discuss a novel mechanism underlying the protective effect of breastfeeding. Collectively, these mechanistic insights offer potential therapeutic avenues for the prevention and/or improved treatment of postpartum breast cancer.
Carcinoma-associated fibroblasts (CAF) are a potential therapeutic target for both direct and indirect regulation of cancer progression and therapy response. In this issue of Cancer Research, Ford and colleagues investigate the influence of CAF on the immune environment of tumors, specifically focusing on the regulation of CD8+ T cells, required for immune therapy response. Their work suggests a role for stromally expressed NADPH oxidase 4 (NOX4) as a modulator of reactive oxygen species that in turn can reduce the number of CD8+ T cells locally. Inhibition of NOX4 increased CD8+ T cells and restored responsiveness to immune therapy, suggesting an indirect stromally targeted avenue for therapy resensitization.See related article by Ford et al., p. 1846
While immuno-oncology has made significant advances in activating local tumor immune responses, leading to improved outcomes, the role of systemic immunity in cancer incidence remains poorly understood. Le Cornet and colleagues prospectively studied circulating immune cells quantified by DNA methylation markers in relation to incidence of breast, colorectal, lung, and prostate cancer among initially healthy individuals. A positive association with cancer risk was observed for higher FOXP3+ T-cell–mediated immune tolerance and lower CD8+ T-cell–mediated cytotoxicity. Further studies of systemic immunity in cancer development are crucial to identify novel prediction markers and interventional targets for cancer immunoprevention.See related article by Le Cornet et al., p. 1885
Although genome-wide association studies (GWAS) have identified more than 100 colorectal cancer risk loci, most of the biological mechanisms associated with these loci remain unclear. Here we first performed a comprehensive expression quantitative trait loci analysis in colorectal cancer tissues adjusted for multiple confounders to test the determinants of germline variants in established GWAS susceptibility loci on mRNA and long noncoding RNA (lncRNA) expression. Combining integrative functional genomic/epigenomic analyses and a large-scale population study consisting of 6,024 cases and 10,022 controls, we then prioritized rs174575 with a C>G change as a potential causal candidate for colorectal cancer at 11q12.2, as its G allele was associated with an increased risk of colorectal cancer (OR = 1.26; 95% confidence interval = 1.17–1.36; P = 2.57 × 10–9). rs174575 acted as an allele-specific enhancer to distally facilitate expression of both FADS2 and lncRNA AP002754.2 via long-range enhancer–promoter interaction loops, which were mediated by E2F1. AP002754.2 further activated a transcriptional activator that upregulated FADS2 expression. FADS2, in turn, was overexpressed in colorectal cancer tumor tissues and functioned as a potential oncogene that facilitated colorectal cancer cell proliferation and xenograft growth in vitro and in vivo by increasing the metabolism of PGE2, an oncogenic molecule involved in colorectal cancer tumorigenesis. Our findings represent a novel mechanism by which a noncoding variant can facilitate long-range genome interactions to modulate the expression of multiple genes including not only mRNA, but also lncRNA, which provides new insights into the understanding of colorectal cancer etiology.Significance:This study provides an oncogenic regulatory circuit among several oncogenes including E2F1, FADS2, and AP002754.2 underlying the association of rs174575 with colorectal cancer risk, which is driven by long-range enhancer–promoter interaction loops.Graphical Abstract:http://cancerres.aacrjournals.org/content/canres/80/9/1804/F1.large.jpg.
RING-finger E3 ligases are instrumental in the regulation of inflammatory cascades, apoptosis, and cancer. However, their roles are relatively unknown in TGFβ/SMAD signaling. SMAD3 and its adaptors, such as β2SP, are important mediators of TGFβ signaling and regulate gene expression to suppress stem cell–like phenotypes in diverse cancers, including hepatocellular carcinoma (HCC). Here, PJA1, an E3 ligase, promoted ubiquitination and degradation of phosphorylated SMAD3 and impaired a SMAD3/β2SP-dependent tumor-suppressing pathway in multiple HCC cell lines. In mice deficient for SMAD3 (Smad3+/−), PJA1 overexpression promoted the transformation of liver stem cells. Analysis of genes regulated by PJA1 knockdown and TGFβ1 signaling revealed 1,584 co-upregulated genes and 1,280 co-downregulated genes, including many implicated in cancer. The E3 ligase inhibitor RTA405 enhanced SMAD3-regulated gene expression and reduced growth of HCC cells in culture and xenografts of HCC tumors, suggesting that inhibition of PJA1 may be beneficial in treating HCC or preventing HCC development in at-risk patients.Significance: These findings provide a novel mechanism regulating the tumor suppressor function of TGFβ in liver carcinogenesis.
T-cell immunoglobulin and mucin domain–containing molecule 3 (TIM-3), a potential immunotherapeutic target for cancer, has been shown to display diverse characteristics in a context-dependent manner. Thus, it would be useful to delineate the precise functional features of TIM-3 in a given situation. Here, we report that glial TIM-3 shows distinctive properties in the brain tumor microenvironment. TIM-3 was expressed on both growing tumor cells and their surrounding cells including glia and T cells in an orthotopic mouse glioma model. The expression pattern of TIM-3 was distinct from those of other immune checkpoint molecules in tumor-exposed and tumor-infiltrating glia. Comparison of cells from tumor-bearing and contralateral hemispheres of a glioma model showed that TIM-3 expression was lower in tumor-infiltrating CD11b+CD45mid glial cells but higher in tumor-infiltrating CD8+ T cells. In TIM-3 mutant mice with intracellular signaling defects and Cre-inducible TIM-3 mice, TIM-3 affected the expression of several immune-associated molecules including iNOS and PD-L1 in primary glia-exposed conditioned media (CM) from brain tumors. Further, TIM-3 was cross-regulated by TLR2, but not by TLR4, in brain tumor CM- or Pam3CSK4-exposed glia. In addition, following exposure to tumor CM, IFNγ production was lower in T cells cocultured with TIM-3–defective glia than with normal glia. Collectively, these findings suggest that glial TIM-3 actively and distinctively responds to brain tumor, and plays specific intracellular and intercellular immunoregulatory roles that might be different from TIM-3 on T cells in the brain tumor microenvironment.Significance:TIM-3 is typically thought of as a T-cell checkpoint receptor. This study demonstrates a role for TIM-3 in mediating myeloid cell responses in glioblastoma.
Determining mechanisms of resistance to αPD-1/PD-L1 immune-checkpoint immunotherapy is key to developing new treatment strategies. Cancer-associated fibroblasts (CAF) have many tumor-promoting functions and promote immune evasion through multiple mechanisms, but as yet, no CAF-specific inhibitors are clinically available. Here we generated CAF-rich murine tumor models (TC1, MC38, and 4T1) to investigate how CAFs influence the immune microenvironment and affect response to different immunotherapy modalities [anticancer vaccination, TC1 (HPV E7 DNA vaccine), αPD-1, and MC38] and found that CAFs broadly suppressed response by specifically excluding CD8+ T cells from tumors (not CD4+ T cells or macrophages); CD8+ T-cell exclusion was similarly present in CAF-rich human tumors. RNA sequencing of CD8+ T cells from CAF-rich murine tumors and immunochemistry analysis of human tumors identified significant upregulation of CTLA-4 in the absence of other exhaustion markers; inhibiting CTLA-4 with a nondepleting antibody overcame the CD8+ T-cell exclusion effect without affecting Tregs. We then examined the potential for CAF targeting, focusing on the ROS-producing enzyme NOX4, which is upregulated by CAF in many human cancers, and compared this with TGFβ1 inhibition, a key regulator of the CAF phenotype. siRNA knockdown or pharmacologic inhibition [GKT137831 (Setanaxib)] of NOX4 “normalized” CAF to a quiescent phenotype and promoted intratumoral CD8+ T-cell infiltration, overcoming the exclusion effect; TGFβ1 inhibition could prevent, but not reverse, CAF differentiation. Finally, NOX4 inhibition restored immunotherapy response in CAF-rich tumors. These findings demonstrate that CAF-mediated immunotherapy resistance can be effectively overcome through NOX4 inhibition and could improve outcome in a broad range of cancers.Significance:NOX4 is critical for maintaining the immune-suppressive CAF phenotype in tumors. Pharmacologic inhibition of NOX4 potentiates immunotherapy by overcoming CAF-mediated CD8+ T-cell exclusion.Graphical Abstract:http://cancerres.aacrjournals.org/content/canres/80/9/1846/F1.large.jpg.See related commentary by Hayward, p. 1799
Skeletal muscle wasting is a devastating consequence of cancer that contributes to increased complications and poor survival, but is not well understood at the molecular level. Herein, we investigated the role of Myocilin (Myoc), a skeletal muscle hypertrophy-promoting protein that we showed is downregulated in multiple mouse models of cancer cachexia. Loss of Myoc alone was sufficient to induce phenotypes identified in mouse models of cancer cachexia, including muscle fiber atrophy, sarcolemmal fragility, and impaired muscle regeneration. By 18 months of age, mice deficient in Myoc showed significant skeletal muscle remodeling, characterized by increased fat and collagen deposition compared with wild-type mice, thus also supporting Myoc as a regulator of muscle quality. In cancer cachexia models, maintaining skeletal muscle expression of Myoc significantly attenuated muscle loss, while mice lacking Myoc showed enhanced muscle wasting. Furthermore, we identified the myocyte enhancer factor 2 C (MEF2C) transcription factor as a key upstream activator of Myoc whose gain of function significantly deterred cancer-induced muscle wasting and dysfunction in a preclinical model of pancreatic ductal adenocarcinoma (PDAC). Finally, compared with noncancer control patients, MYOC was significantly reduced in skeletal muscle of patients with PDAC defined as cachectic and correlated with MEF2c. These data therefore identify disruptions in MEF2c-dependent transcription of Myoc as a novel mechanism of cancer-associated muscle wasting that is similarly disrupted in muscle of patients with cachectic cancer.Significance:This work identifies a novel transcriptional mechanism that mediates skeletal muscle wasting in murine models of cancer cachexia that is disrupted in skeletal muscle of patients with cancer exhibiting cachexia.
Recurrent hotspot (p.Gly17Val) mutations in RHOA encoding a small GTPase, together with loss-of-function mutations in TET2 encoding an epigenetic regulator, are genetic hallmarks of angioimmunoblastic T-cell lymphoma (AITL). Mice expressing the p.Gly17Val RHOA mutant on a Tet2-null background succumbed to AITL-like T-cell lymphomas due to deregulated T-cell receptor (TCR) signaling. Using these mice to investigate therapeutics for AITL, we found that dasatinib, a multikinase inhibitor prolonged their survival through inhibition of hyperactivated TCR signaling. A phase I clinical trial study of dasatinib monotherapy in 5 patients with relapsed/refractory AITL was performed. Dasatinib was started at a dose of 100 mg/body once a day and continued until days 10–78 (median day 58). All the evaluable patients achieved partial responses. Our findings suggest that AITL is highly dependent on TCR signaling and that dasatinib could be a promising candidate drug for AITL treatment.Significance:Deregulated T-cell receptor signaling is a critical molecular event in angioimmunoblastic T-cell lymphoma and can be targeted with dasatinib.
Although ample evidence indicates that immune cell homeostasis is an important prognostic outcome determinant in patients with cancer, few studies have examined whether it also determines cancer risk among initially healthy individuals. We performed a case–cohort study including incident cases of breast (n = 207), colorectal (n = 111), lung (n = 70), and prostate (n = 201) cancer as well as a subcohort (n = 465) within the European Prospective Investigation into Cancer and Nutrition-Heidelberg cohort. Relative counts of neutrophils, monocytes, and lymphocyte sublineages were measured by qRT-PCR. HRs and 95% confidence intervals were used to measure the associations between relative counts of immune cell and cancer risks. When relative counts of immune cell types were taken individually, a significant positive association was observed between relative counts of FOXP3+ regulatory T cells (Tregs) and lung cancer risk, and significant inverse associations were observed between relative CD8+ counts and risks of lung and breast cancer (overall and ER+ subtype). Multivariable models with mutual adjustments across immune markers showed further significant positive associations between higher relative FOXP3+ T-cell counts and increased risks of colorectal and breast cancer (overall and ER− subtype). No associations were found between immune cell composition and prostate cancer risk. These results affirm the relevance of elevated FOXP3+ Tregs and lower levels of cytotoxic (CD8+) T cells as risk factors for tumor development.Significance:This epidemiologic study supports a role for both regulatory and cytotoxic T cells in determining cancer risk among healthy individuals.See related commentary by Song and Tworoger, p. 1801
Women of Latin American origin in the United States are more likely to be diagnosed with advanced breast cancer and have a higher risk of mortality than non-Hispanic White women. Studies in U.S. Latinas and Latin American women have reported a high incidence of HER2 positive (+) tumors; however, the factors contributing to this observation are unknown. Genome-wide genotype data for 1,312 patients from the Peruvian Genetics and Genomics of Breast Cancer Study (PEGEN-BC) were used to estimate genetic ancestry. We tested the association between HER2 status and genetic ancestry using logistic and multinomial logistic regression models. Findings were replicated in 616 samples from Mexico and Colombia. Average Indigenous American (IA) ancestry differed by subtype. In multivariate models, the odds of having an HER2+ tumor increased by a factor of 1.20 with every 10% increase in IA ancestry proportion (95% CI, 1.07–1.35; P = 0.001). The association between HER2 status and IA ancestry was independently replicated in samples from Mexico and Colombia. Results suggest that the high prevalence of HER2+ tumors in Latinas could be due in part to the presence of population-specific genetic variant(s) affecting HER2 expression in breast cancer.Significance:The positive association between Indigenous American genetic ancestry and HER2+ breast cancer suggests that the high incidence of HER2+ subtypes in Latinas might be due to population and subtype-specific genetic risk variants.
It is well established that African Americans exhibit higher incidence, higher mortality, and more aggressive forms of some cancers, including those of breast, prostate, colon, stomach, and cervix. Here we examine the ancestral haplotype of the TRPV6 calcium channel as a putative genomic factor in this racial divide. The minor (ancestral) allele frequency is 60% in people of African ancestry, but between 1% and 11% in all other populations. Research on TRPV6 structure/function, its association with specific cancers, and the evolutionary-ecological conditions that impacted selection of its haplotypes are synthesized to provide evidence for TRPV6 as a germline susceptibility locus in cancer. Recently elucidated mechanisms of TRPV6 channel deactivation are discussed in relation to the location of the allele favored in selection, suggesting a reduced capacity to inactivate the channel in those who have the ancestral haplotype. This could result in an excessively high cellular Ca2+, which has been implicated in cancer, for those in settings where calcium intake is far higher than in their ancestral environment. A recent report associating increasing calcium intake with a pattern of increase in aggressive prostate cancer in African-American but not European-American men may be related. If TRPV6 is found to be associated with cancer, further research would be warranted to improve risk assessment and examine interventions with the aim of improving cancer outcomes for people of African ancestry.
Ovarian cancer imposes a substantial health and economic burden. We systematically reviewed current health-economic evidence for ovarian cancer early detection or prevention strategies. Accordingly, we searched relevant databases for cost-effectiveness studies evaluating ovarian cancer early detection or prevention strategies. Study characteristics and results including quality-adjusted life years (QALY), and incremental cost-effectiveness ratios (ICER) were summarized in standardized evidence tables. Economic results were transformed into 2017 Euros. The included studies (N = 33) evaluated ovarian cancer screening, risk-reducing interventions in women with heterogeneous cancer risks and genetic testing followed by risk-reducing interventions for mutation carriers. Multimodal screening with a risk-adjusted algorithm in postmenopausal women achieved ICERs of 9,800–81,400 Euros/QALY, depending on assumptions on mortality data extrapolation, costs, test performance, and screening frequency. Cost-effectiveness of risk-reducing surgery in mutation carriers ranged from cost-saving to 59,000 Euros/QALY. Genetic testing plus risk-reducing interventions for mutation carriers ranged from cost-saving to 54,000 Euros/QALY in women at increased mutation risk. Our findings suggest that preventive surgery and genetic testing plus preventive surgery in women at high risk for ovarian cancer can be considered effective and cost-effective. In postmenopausal women from the general population, multimodal screening using a risk-adjusted algorithm may be cost-effective.